Quasi-Periodic Oscillations in Numerical Simulation of Accretion Flows Around Black Holes
نویسندگان
چکیده
We present results of several numerical simulations of two dimensional axisymmetric accretion flows around black holes using the Smoothed Particle Hydrodynamics (SPH). We consider both stellar black holes and as well as supermassive black holes. We assume bremsstrahlung to be the only source of cooling as it is simpler to implement in numerical simulations. We observe that due to both radial and vertical oscillation of shock waves in the accretion flow, the luminosity and average thermal energy content of the inner disk exhibit very interesting behaviors. When power density spectra are taken, quasi-periodic oscillations are seen at a few Hz and also occasionally at hundreds of Hz for stellar black holes. For super-massive black holes, the time-scale of the oscillations ranges from hours to weeks. The power density spectra have usual flat top behavior with average rms amplitude a few percent and a broken power-law behavior. The break frequency is generally found to be close to the QPO frequency as seen in the observed power spectra of black holes. Subject headings: black hole physics — hydrodynamics — accretion, accretion disks — radiative transfer — Instabilities (Submitted to Astrophysical Journal)
منابع مشابه
The effect of cooling on time dependent behaviour of accretion flows around black holes
We present the results of several numerical simulations of two dimensional axi-symmetric accretion flows around black holes using Smoothed Particle Hydrodynamics (SPH) in the presence of cooling effects. We consider both stellar black holes and super-massive black holes. We observe that due to both radial and vertical oscillation of shock waves in the accretion flow, the luminosity and average ...
متن کاملNumerical models of rotating accretion flows around black holes
Numerical, two-dimensional, time-dependent hydrodynamical models of geometrically thick accretion discs around black holes are presented. Accretion flows with non-effective radiation cooling (ADAFs) can be both convectively stable or unstable depending on the value of the viscosity parameter α. The high viscosity flows (α ≃ 1) are stable and have a strong equatorial inflow and bipolar outflows....
متن کاملOn the Azimuthal Stability of Shock Waves around Black Holes
Analytical studies and numerical simulations of time dependent axially symmetric flows onto black holes have shown that it is possible to produce stationary shock waves with a stable position both for ideal inviscid and for moderately viscous accretion disks. We perform several two dimensional numerical simulations of accretion flows in the equatorial plane to study shock stability against non-...
متن کاملCalculation of the relativistic bulk tensor and shear tensor of relativistic accretion flows in the Kerr metric.
In this paper, we calculate the relativistic bulk tensor and shear tensor of the relativistic accretion ows in the Kerr metric, overall and without any approximation. We obtain the relations of all components of the relativistic bulk and shear tensor in terms of components of four-velocity and its derivatives, Christoffel symbols and metric components in the BLF. Then, these components are deri...
متن کاملNumerical Simulations of Rotating Accretion Flows near a Black Hole
We present time-dependent solutions of thin, supersonic accretion flows near a black hole and compare them with analytical solutions. Such flows of inviscid, adiabatic gas are characterized by the specific angular momentum and the specific energy. We confirm that for a wide range of above parameters a stable standing shock wave with a vortex inside it forms close to the black hole. Apart from s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002